Vorbereitung
- Installation v. cv2, numpy und imutils
- Download der xml-Dateien
- Organisation der zu analysierenden Videofiles
Code-Anpassungen
- „minSize“ beschreibt die Mind.-Gesichtsgröße in Pixel
- „minNeighbors“ & „scaleFactor“ beschreibt div. Tuningmetriken
- „cv2.VideoCapture“ beschreibt die Quelle. cv2.VideoCapture(0) -> Webcam
Code
import cv2
import numpy as np
import imutils
from tensorflow.keras.models import load_model
# Gesichtserkennungs-Modell laden
# face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + ‚haarcascade_profileface.xml‘)
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + ‚haarcascade_frontalface_default.xml‘)
# Mimik-Erkennungs-Modell laden
# emotion_classifier = load_model(“, compile=True)
emotion_classifier = load_model(‚fer_model.h5‘, compile=True)
emotion_labels = {0: ‚Angry‘, 1: ‚Disgust‘, 2: ‚Fear‘, 3: ‚Happy‘, 4: ‚Sad‘, 5: ‚Surprise‘, 6: ‚Neutral‘}
# Video-Stream initialisieren
cap = cv2.VideoCapture(„Dateiname“)
while True:
ret, frame = cap.read()
if not ret:
break
# Gesichtserkennung
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=1, minSize=(150, 150), flags=cv2.CASCADE_SCALE_IMAGE)
for (x, y, w, h) in faces:
# Gesichtsausschnitt extrahieren
face = gray[y:y + h, x:x + w]
face = cv2.resize(face, (48, 48))
face = face.astype(„float“) / 255.0
face = np.expand_dims(face, axis=0)
face = np.expand_dims(face, axis=-1)
# Mimik erkennen
predictions = emotion_classifier.predict(face)[0]
emotion_probability = np.max(predictions)
label = emotion_labels[np.argmax(predictions)]
# Rechteck um das Gesicht zeichnen
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Text mit der erkannten Mimik hinzufügen
cv2.putText(frame, label, (x, y – 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)
cv2.imshow(‚frame‘, frame)
if cv2.waitKey(1) & 0xFF == ord(‚q‘):
break
cap.release()
cv2.destroyAllWindows()